

Edge-enhanced Feature Distillation Network for Efficient Super-Resolution

Yan Wang Nankai University

 $\mathcal{L}_y = 0.0092$

img_093 from Urban100 [13]

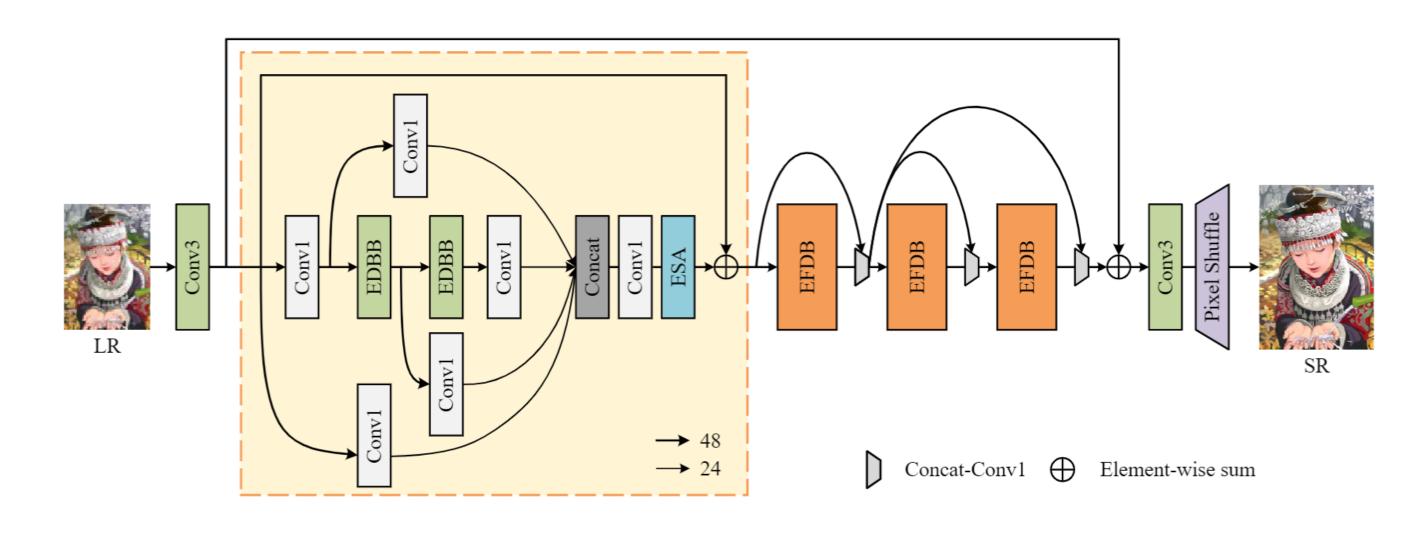
img_099 from Urban100 [13]

 $\mathcal{L}_l = 0.0015$

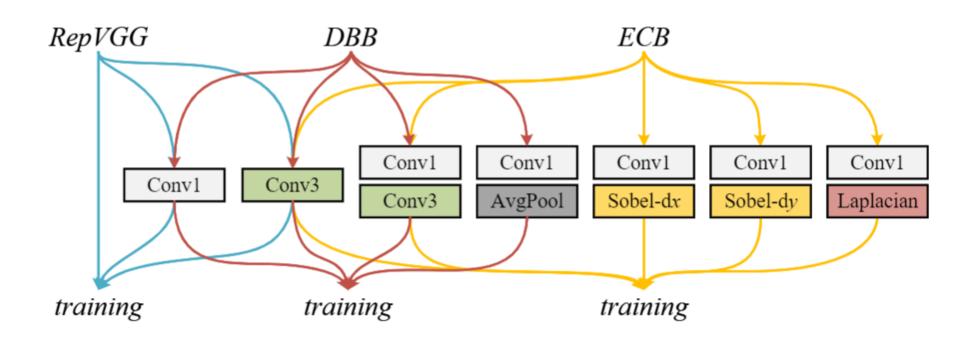
VDSR

CARN

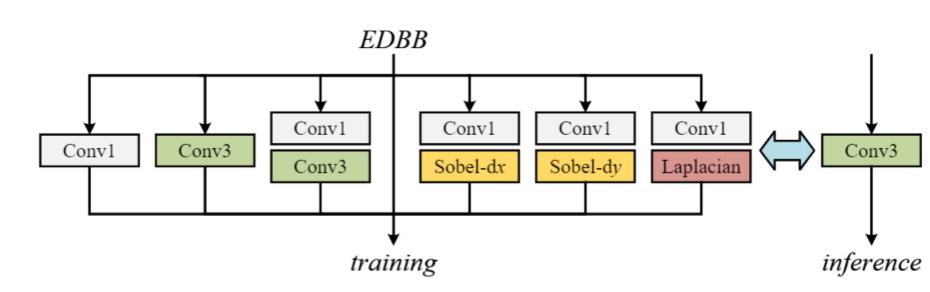
IMDN


EFDN (Ours)

Contribution:


- ✓ A plug-in edge-enhanced diverse branch block (EDBB) by revisiting existing reparameterization technologies.
- ✓ A novel gradient-variance loss function for edge information preserve.
- ✓ Combining block composing, NAS, and loss design into one framework.

Method:


✓ Network architecture

✓ EDBB

(a) Revisiting re-parameterizable typology.

- (b) Proposed edge-enhanced diverse branch block.
- ✓ Loss design

$$egin{aligned} v_x^{HR} = rac{\sum_{j=1}^{n^2} \left(G_{i,j} - \overline{G}_i
ight)}{n^2 - 1} &
ightarrow \mathcal{L}_x = \mathbb{E}_{I^{SR}} \|v_x^{HR} - v_x^{SR}\| \ \mathcal{L} = \mathcal{L}_1 + \lambda_x \mathcal{L}_x + \lambda_y \mathcal{L}_y + \lambda_z \mathcal{L}_z \end{aligned}$$

Results:

✓ Ablation study

	Block	3×3 Conv	1×1 Conv	Identity	Expand- Squeeze	Scaled Filter	Set5	Set14	B100	Urban100
FSRCNN [10]	Baseline- \mathcal{L}_1	√					37.09/0.9569	32.75/0.9098	31.56/0.8913	30.00/0.9037
	Baseline- \mathcal{L}_{EG}	\checkmark					37.14/0.9571	32.77/0.9103	31.58/0.8917	30.00/0.9040
	RepVGG [8]	\checkmark	\checkmark	\checkmark			37.15/0.9571	32.78/0.9102	31.59/0.8916	30.06/0.9045
	DBB [7]	\checkmark	\checkmark		\checkmark	Avgpool	37.18/0.9572	32.77/0.9103	31.60/0.8918	30.11/0.9050
	ECB [37]	\checkmark			\checkmark	Laplacian & Sobel	37.17/0.9572	<u>32.80</u> /0.9103	31.59/0.8915	30.09/0.9044
	EDBB- \mathcal{L}_1	\checkmark	\checkmark	\checkmark	\checkmark	Laplacian & Sobel	37.19/0.9573	<u>32.80/0.9104</u>	31.61/0.8919	30.14/0.9052
	EDBB- \mathcal{L}_{EG}	\checkmark	\checkmark	\checkmark	\checkmark	Laplacian & Sobel	37.27/0.9576	32.86/0.9109	31.65/0.8926	30.25/0.9069
SR [16]	Baseline- \mathcal{L}_1	√					37.69/0.9593	33.24/0.9142	31.99/0.8970	31.30/0.9198
	Baseline- \mathcal{L}_{EG}	\checkmark					37.72/0.9595	33.30/ <u>0.9147</u>	32.02/0.8978	31.40/0.9215
	EDBB- \mathcal{L}_1	\checkmark		\checkmark	\checkmark	Laplacian & Sobel	37.73/0.9594	33.26/0.9143	31.99/0.8968	31.32/0.9205
	EDBB- \mathcal{L}_1	\checkmark	\checkmark		\checkmark	Laplacian & Sobel	37.73/ <u>0.9596</u>	<u>33.33</u> /0.9145	32.02/0.8973	31.38/0.9205
ΛĎ	EDBB- \mathcal{L}_1	\checkmark	\checkmark	\checkmark	\checkmark	Avgpool	37.68/0.9593	33.28/0.9142	32.00/0.8971	31.27/0.9190
	EDBB- \mathcal{L}_1	\checkmark	\checkmark	\checkmark	\checkmark	Laplacian & Sobel	<u>37.76</u> /0.9595	33.33/0.9147	32.03/0.8975	<u>31.41</u> /0.9207
	EDBB- \mathcal{L}_{EG}	\checkmark	\checkmark	\checkmark	\checkmark	Laplacian & Sobel	37.85/0.9600	33.41/0.9158	32.10/0.8987	31.65/0.9237
*	Baseline- \mathcal{L}_1	√					37.91/0.9601	33.44/0.9168	32.12/0.8990	31.82/0.9253
	EDBB- \mathcal{L}_{EG}	\checkmark	\checkmark	\checkmark	\checkmark	Laplacian & Sobel	38.00/0.9604	33.57/0.9179	32.18/0.8998	32.05/0.9275

✓ Quantitative Result

Dataset	Scale	Bicubic Para/MAdds	FSRCNN [10] 12K/4.6G	VDSR [16] 665K/612.6G	 CARN [3] 1592K/90.9G	IMDN [14] 715K/41.0G	 EFDN (Ours) 276K/14.7G
Set5		33.66/0.9299 28.42/0.8104	37.00/0.9558 31.35/0.8838				
Set14		30.24/0.8688 26.00/0.7027	32.63/0.9088 27.61/0.7550				
B100		29.56/0.8403 25.96/0.6675	31.53/0.8920 26.98/0.7150				
Urban100		26.88/0.8403 23.14/0.6577	29.88/0.9020 24.62/0.7280	30.76/0.9140 25.18/0.7524			

✓ Running-time Result

Method	Time on 2070-maxQ	Time on 3090		
IMDN [14]	0.158s	0.092s		
EFDN (Ours)	0.089 s	0.019 s		

Project:

